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AN EXTENSION OF A KINETIC THEORY OF POLYMER CRYSTALLIZATION THROUGH THE

EXCLUSION OF NEGATIVE BARRIERS

Jerry I. Scheinbeim, Louis Petrone, Brian A. Newman
Department of Mechanics and Materials Science

Rutgers University
Piscataway, NJ 08855-0909

ABSTRACT

The simplest version of the Lauritzen-Hoffman (LH) model of polymer

crystallization which applies to Infinitely long model polymer molecules

crystallizing on an existing substrate of infinite width, is re-examined. The

mathematical expressions for the model free energy barriers are observed to

take on negative values at high supercooling. Since such negative barriers

appear to be physically unrealizable for the crystallization process, the LH

model is extended by imposing a mathematical constraint on the expressions for

the barriers, to forbid them from ever being negative. The extended model

contains one parameter 7 which varies from zero to one and is analogous to the

parameter b of the LH model. For all values of 7 less than one, tha extended

model predicts a finite lamellar thickness at every supercooling; moreover,

this thickness, at large undercooling, decreases monotonically with increasing

undercooling in agreement with experiment, but in marked contrast to the LH

model which exhibits the well-known 62 catastrophe. The relative

insensitivity of the calculated lamellar thicknesses to the parameter 7

supports the use of 7 - 0 as a first approximation for mathematical

convenience in practice.
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I. INTRODUCTION

Recently, the crystallization of poly(vinylidene) fluoride (PVF 2 ) in the

presence of high electric fields has been studied both experimentally and

theoretically. Of the four well-known crystalline forms a, fi, y, and 6 (or

II, I, III, and IV) of PVF 2 , the phase with the largest spontaneous

polarization and potential for applications is the 6-phase.

Crystallization of PVF 2 from a concentrated solution of tricresyl

phospate in the presence of a high electric field was observedI to produce f-

phase crystals, with dipoles oriented in the field direction, during

the initial stages of crystallization followed by the growth of unoriented a-

crystals (non-polar) as crystallinity increased and the tricresyl phosphate

content decreased by evaporation. The decrease in tricresyl phosphate content

and subsequent crystal growth behavior suggests that the local electric field

in the solution region changes. Other experimental and theoretical 2 ' 3 studies

of crystallization of PVF 2 from the melt in the presence of a high static

electric field have been made, and were found to give i-phase crystals which

however did not show crystal orientation. As part of the continuing effort to

understand the structure-property relationships of PVF 2 and because of its

practical importance, our ultimate goal--despite the complexity of the system

described--is to develop a theory or model which can account for its

crystallization behavior from concentrated solutions in the presence of an

electric field.

As in the case of isothermal crystallization of a and 7 phase from the

melt in an electric field,3 a theory of isothermal crystallization of a, P,

and 6 phase from concentrated solution in an electric field, would be based on

"cla:17ral" and "polymer" theories of nucleation and growth in the absence of

an applied field. Most importantly, the nucleation barrier or activation free

energy barrier for nucleation would certainly be different in the presence of

the field than in its absence; and this barrier has been seen to be of

fundamental importance in the theories of polymer crystallization, the

simplest of which is the LH or Lauritzen-Hoffman theory. 4 ' 5 One possibly
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unrealistic feature which seems to have been incorporated into the LH theory

in order to simplify it, is that the nucleation barrier is not constrained in

the theory to take on only nonnegative values.6 The word "barrier" connotes a

positive quantity, and furthermore, the LH theory is based on transition state

theory 'n which the barrier corresponds to an intermediate configuration or

transition state of the system which is at a free energy maximum relative to
9

some initial and final state of the system. Moreover, the LH theory

exhibits, in contrast with experiment, the 6) catastrophe wherein the

calculated average lamellar thickness I suddenly passes through a minimum and

becomes infinite at a temperature, T., corresponding to a moderately large

undercooling; and, in fact, the nucleation barrier in this theory is positive

for all T > Tc, is zero at T - Tc, and is negative for all T < Tc for the

special case which Lauritzen and Hoffman have recently considered.

Therefore, prior to developing an extension of the LH theory which would

involve ascertaining the effect of an electric field on the nucleation

barrier, we try to extend the LH theory to larger undercooling by

incorporating into it the assumption that free energy barriers cannot be

negative. Note that, unlike in the LH theory of polymer crystallization,

barriers in classical nucleation theory are never negative; however, the

classical theory does not explicitly take into account polymer chain folding,

and for that reason, we have not yet considered modifying the Marand and Stein

theory2 of crystallization from the melt to treat the PVF 2 /tricresyl phosphate

crystallizing solution.

The remainder of this paper is organized as follows. In Section II, the

LH model is described. The kinetic treatment of the LH model is given in

Section III. The rate constants needed for this treatment are determined in

Section IV. Next, our extension of the LH model is described in Section V;

the conditions which determine the sign of 601, the free energy of formation

of that portion of a model polymer molecule which crystallizes first on an

existing crystal, are found in Section VI. A summary of the expressions for

the barriers in cur model is given in Section VII along with the expressions
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for the average lamellar thickness. In Section VIII, the variable

transformations required as a preliminary to numerical integration are

introduced. Results and discussion appear in Section IX, and conclusions are

given in Section X.

II. THE LAURITZEN-HOFFMAN MODEL

The model to be extended is one version4 ' 5 of the well-known Lauritzen-

Hoffman (LH) model of polymer crystallization. Our description of this

version is as follows. The model polymer molecules are assumed to be

infinitely long and crystallize on an existing crystalline face or substrate

which is assumed to be infinitely wide (i.e. the fact that its width is finite

is ignored). A sequence of length I of polymer segments of width a and

thickness b as well as the volume associated with that sequence--which is

taken to be a parallelepiped of length 2, width a, and thickness b--is

designated as a stem. Only stems of length I can crystallize on an existing

face of length 2, but the length 1, the lamellar thickness, can vary from

crystal to crystal. Any sequence of length I of segments of a model molecule

can be placed first on a given face and, upon placement, is designated as the

first stem. The free energy of formation of the first stem is

A0 1 - A00 - A0I - 0 or 40, - 2aboa + 2blo - ablAf

where Af > 0 is the free energy of fusion per unit volume at a temperature T

below the melting point T; of the model polymer (i.e. of a crystal of very

large 1) and Af - 0 at T - T;; where a is the lateral surface free energy per

unit area (i.e. that associated with the surfaces of area bX and al of a

stem); and where a' is the surface free energy per unit area associated with

the cilium that protrudes through each of the surfaces of area ab of the first

stem. Recently,4-7 ae has been assumed to be zero; generally, one can
11

assume that 0 < o' • Ge* All surface free energies per unit area in the

model are assumea to be independent of T and 2. (See Figure 2(a) of Reference
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4 or Figure 22 of Reference 5.) The placement of each subsequent stem

involves:

1. the destruction of the cilium associated with one of the surfaces of

area ab of an adjacent stem already crystallized,

2. an adjacent reentry and the formation of a tight fold associated with

two surfaces of area ab, and

3. the formation of a cilium associated with the remaining surface of

area ab of the stem being placed.

Only adjacent reentry and hence only tight folding is incorporated in this

version of the model.

The free energy of formation of the Yth stem (v > 1) is therefore

A4-,.- AOM - aba' + 2 abue + aba' - ab2Af

e e e
or

&0 V- A0uVl - 2 abae - abiAf - -E

where A40 is the free energy of formation of a group of w stems (relative to

A00 - 0) and where ae is the surface free energy per unit area associated with

half of a fold. Iteration of A0V - 40,l ' E (v > 1) gives

AOM - A01 - (v-l)E

- 2bla + 2abae - 2 abae + vab(2oe-lAf).

In order that stem additions subsequent to the placement of the first stem be

thermodynamically favorable, i.e. in order that they would in fact occur, one
2a

must impose the constraint -E < 0 and consequently I > 2 . Stems of smaller

length are unstable and disappear. By contrast, A01 can be positive, zero,
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or negative; E > 0 guarantees that A0 < 0 will occur for finite v. Note the

sign conventions for 60, and E.

III. THE KINETIC TREATMENT OF THE LAURITZEN-HOFFMAN MODEL

Our description of the kinetic treatment '5 of the LH model is as

follows. The following assumptions are made:

1. Assume that transition state theory can be utilized to describe the

kinetics of the LH model of polymer crystallization.

2. Assume that the formation (crystallization) of a single stem is an

elementary process or elementary reaction; that the destruction

(melting) of a single stem is An elementary process or elementary

reaction; and that transition state theory can be applied to these

two elementary processes with a single transition state corresponding

to a relative free energy maximum or barrier thus occurring between

each two integral values of v on a plot of A0 vs. v.

3. Assume that only one stem at a time can be formed or destroyed.

The kinetic problem is to derive an expression for the net rate S,(1,T)

at which stems of length I (and width a) pass over or surmount the vth free

energy barrier at temperature T. The problem requires consideration of the

following set of connected elementary reactions

0 1 2 3 4 ...

where A is the rate constant for the forward reaction v - v+l (v • 1) and B is

that for the reverse reaction v+l - v (vL'l), and where A0 and BI are the

analogous rate constants for the v-0 &v-1 reactions. Solution8 of this

problem in the steady-state approximation gives

N A (A-B)
SV(1,T) A.B+B1 - S(1,T)
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for all v, whzre N0 is the number of sites or locations available for the

placement of a first stem. The total net rate at whirh stems (i.e. the net

rate including stems of all possible values of 2) pass over the wth barrier at

temperature T is given, for all v, by

STotal(T) - S(1,T)
T

where 2 1 is the smallest allowed value of I which satisfies the constraint
2%e

I . Note that I is a discrete variable--the smallest increment in I that

can be made is the monomer repeat length Iu" To Aind 11, first write I - m~u,
2ue 2oe/Af

where m is a positive integer. Then I > -2 implies m > 20e , that is, m is
2fe/u

greater than or equal to the smallest integer greater than 2a , and

2ae/Af
therefore, 11 - [I+INT(X)]Iu, where X - I and INT(X) designates the

2ce

integer part of X. Substituting lu into the expression for 21 gives 21
L X f) . To a good approximation, X I (i.e. X is

2a
sufficiently greater than 1) so that 11 =--AT

Finally, one assumes that S(1,T) j 7 S(I,T)dl; and the
u2

kinetically-determined average lamellar thickness is then given by

fc I S(1,T) dl

•(T) -0 S(2,T) dl

IV. DETERMINATION OF THE RATE CONSTANTS

To obtain expressions for A0 , B1 , A and B, one must first determine

expressions for the free energy barriers for the relevant reactions v P+I (v

a 0). Let E1 be the free energy barrier to the destruction of the first stem;

then A01 + E1 is the barrier to the formation of the first stem in order that

(Ao 1 +EI) - El - A01 . Let E2 be the free energy barrier to the formation of
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each subsequent stem; then E + E2 is the barrier to the destruction of each

such stem in order that (E+E 2 ) - E2 - E. Now, one does not know the free

energy barrier to the formation of the first stem. At least, one does know

that it depends on what length P' of a fully adsorbed stem of length I

actually crystallizes before the barrier is surmounted. If 2' - 0, then none

of the free energy of crystallization (i.e. -ablAf) is released before the

barrier is surmounted, and clearly, A01 + El - 2aba;+2bla and E1 - ablAf. In

general then, for 0 : 2' : 12,

AOI+EI - 2aba' + 2bl2 abl'Af and El - ab(I-P)Af.

Since P' is unknown, a parameter • - with 0 s :5 i, is introduced in order

that all possible so-called apportionments of the free energy of fusion abRAf

between the rate constants for the formation and destruction of a first stem

(i.e. for the forward and reverse reactions 0 1 1) can be considered. Thus,

4+ 2abae' + 2bla - Oab2Af and El - (i-0" ablAf.

Note that the greater the amount Oab2Af of the free energy of fusion which is

in fact "apportioned" (i.e. the greater the value of 0 or 2'), the smaller the

value of both AO, + E, and E1 (for a given I and T). A very similar
7

interpretation of 0 has been discussed recently.

Similarly, for each subsequent stem, let 2" (0 s 1" 5 1) be the length of

a fully adsorbed stem which actually crystallizes before the barrier to the

formation of the stem is surmounted. Then

E2 - 2abae - ab2"Af and E + E2 - ab(I-l")Af.

Define the apportionment parameter -- with 0s S 5 1 so that

E2 - 2 aba e - OabfAf and E + E2 - (1-0) ab2Af.

Finally, utilizing transition state theory,



A kT "(AO1+EI+Af)/kT e"(AO1+El)/kT
A0 - he

-EI/kT -E2 /kT -(E+E2)/kTB1 , e ;A - 6 e ;B - e

where AP is the contribution to each barrier as a result of retardations in

the transport of a polymer chain through the liquid to the substrate or vice

versa. Note that B does not depend on 0 and that !0 does not depend on 0 as

required.

V. THE EXTENSION OF THE LAURITZEN-[OFFMAN MODEL

As implied throughout the above discussion, the application of transition

state theory to the elementary processes of single stem formation and

destruction presumes that there is a single relative free energy maximum9 or

barrier between each two integral values of v on a plot of A0 vs. v.

Consequently, A4 1+El, El, E2 , and E+ should never be negative Clearly, E,-

(l-0) abltf and E+E2 - (l-O)ablAf are never negative; however, the expressions

given above for Ai 1+E1 and E2 can be negative. In fact, E2 , for example, is

negative for all 2 such that 2 < I for a given Af, 0, and ae' We propose to

extend the LH model by incorporating into the model the assumption that free

energy barriers cannot be negative, i.e. only apportionments of the free

energy of fusion which result in a nonnegative barrier will be allowed.

In order to incorporate this constraint into the model, first note that

Ao1+E1 - 2aba' + 2bIG - Oab24f is never negative when A41 is positive sincee#

then, abXAf < 2aba' + 2blo always holds and Oabl4f < 2abae + 2bla follows.e e
However, when A01 is negative, the expression 2abeý + 2b~ a -abl4f can be

negative. The requirement that A01 + E1 z 0 hold when 40, is negative implies,

that one is not allowed to apportion all of the free energy of fusion ablAf

when A0, is negative. If the amount Oab1Af of the free energy of fusion which

is apportioned were to exceed 2aba' + 2bla, then A41+E1 would be negative.
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The maximum amount which can be apportioned is indeed 2aba' + 2b2a, and
e

therefore one has, when A01 < 0,

Ao1+E1 - ý(2aba' + 2bla)
e

where . is an apportionment parameter with 0 S : 5 1. Using (AO1 +EI) -E -

A01 or E1 - (Ao 1 +EI) - A0I gives

El - C(2abac + 2bla) - (2aba' + 2bla-ablAf) - abltf-(l-ý)(2abac+ 2bla).

Observe that the requitement that a4 1 +E1 2 0 holds when A01 is negative is

equivalent to the phys-zally realistic requirement that the barrier E1 to the

destruction of the first stem cannot be smaller than the free energy increase

that occurs upon its destruction. Note that ab1Af-(2aba'+2bia) -

-A01. Also, this physically realistic requirement implies that an adsorbed

first stem cannot completely crystallize before the barrier to the format-on

of that stem is surmounted, i.e. that the upper limit on V' is less than 2

when A01 is negative. This upper limit on V' is determined later. For A0, >

0, the expressions A01 + El - 2abo' + 2bia - OablAf and El - (l-O)abltf still

hold with 0 s 0 S 1 and 0 S 2' 5 2.

At this point, a simple change of variable is introduced for convenience.

Define A - l-ý with 0 S A s 1.

Now observe that although the free energy of fusion is ablAf when A01 is

positive or negative, the free energy of fusion which can be apportioned is

ablAf when A41 is positive but is (2aba' + 2b~a) when A01 is negative. Also,

the free energy of fusion that is in fact apportioned is 4)ablAf when A01 is

positive, but is A(2aba' + 2b~a) when Ai is negative. Clearly then, the

fraction of the free energy of fusion which can be apportioned that is

apportioned is 4 when A01 is positive, but is A when A0, is negative. If we

always choose the same value for A and 0, then over the whole range of values

for A01 , the fraction of the free energy of fusion which can be apportioned,

has the same value. Let 7 denote any particular value which is ctosen for

both 4 and A, where 0 • 1 < 1.
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Note that equal values of 0 and A do not imply the same value of 2'

(except when A01 - 0 as will become evident); as usual 0 - -- , but an

expression for A in terms of 2' or vice versa remains to be obtained. In our

approach, then, V' depends at least on the sign of A01, and yet we utilize

only one parameter, Ty--the fraction of the free energy of fusion which can be

apportioned that is apportioned--which is a constant over the whole range of

values for A01.

In summary, the barriers in terms of the apportionment parameter y are

60, + El - (l-1)(2abao + 2bia)

I for A 0

El - ablAf - 7(2abac + 2bca)

e
A41+ E -2abc' + 2blc - yab2Af

I for A1 0

El - (l-7)ablAf

where we now observe that (l-7)(2abol + 2blo) - 2abae + 2bla - 7ablAf when A01

- 0, i.e. A01 + El is a continuous function of I and Af at the points (1,Af)

for which A01 - 0. Note that the greater the value of the apportionment

parameter 7, the smaller the value of both A01 + El and El.

An expression for 2' is not needed in order to evaluate STotal(T) and

I(T). However, an expression for V in terms of A and vice versa will be

derived in order to see how 2' depends on other quantities in our model.

Given A01 + El - (l-A)(2aba' + 2b~o) for A01 < 0, one can first find ! when
e

A61 < 0 holds in terms of A by equating the expressions

(l-A)(2aba; + 2b~a) - 2aba' + 2bla - OablAfe

whence

2aba' + 21

or
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J- A f -- + 2 f

Clearly, equating these expressions and expressing 0 when A0 < 0 in terms of

A is valid since decreasing 2aba' + 2b6a by an amount OablAf must be

equivalent to decreasing 2aba; + 2b6a by A(2aba; + 2bla). Note that the

2a'
expression C e + is always less than one when AI is negative. To see

this, simply observe that A01 < 0 implies 2aboa + 2b2a < ablMf, and then

divide both sides of this inequality by ablAf. But U - for all values of

A01 so that
f2a'

Note that since A cannot exceed one, the largest possible value of 1', i.e.

the upper limit on V', is I + for A01 < 0; as mentioned previously,

this upper limit is indeed less that I for A01 < 0.

For completeness, one can also find A when A61 > 0 holds in terms of 0 by

equating the expressions

(I-A)(2aboa + 2bla) - 2abao + 2bla - OablAf

whence

Aa- e u 2a)
0 f +atif

Clearly, equating these expressions and expressing X when 601 > 0 in terms of

0 is valid since decreasing 2abue + 2bla by an amount OabiAf must be

equivalent to decreasing 2abo' + 2bla by A(2ab°; + 2bla). Here again, 0 - ILI
e e1

andA , . Note that te + is always greater than oneand• -•- _2e + 2a

1Af aMf

when AO, is positive.

In summary, then, for A01 < 0, one chooses a value from zero to one for

the parameter 7, whence A -X , and then calculates 0 - AeAf + ý . For AO,

> 0, one chooses a value from zero to one for the parameter 7, whence 0 -

and then calculates A - (22a 2 Thus,

AMf +4
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} for A01 S

-Y

for A > 0

(1- (2c7f + 2c

20'
And, for all A01, one can calculate V' from 2' - 1 or from I'-X[-' +

Incidentally, the constraint 2abal + 2b5a - #ablAf a 0 combined with 0

1 1 implies that the inequality

(2a'
0 s the smaller of I and (T' +

must be satisfied, and clearly our theory has satisfied it.

Similarly, the constraint ablAf - A(2aba' + 2bIa) a 0 combined with 0 S A s 1

implies that the inequality

0 : A : the smaller of I and (Of,

+ 2g.
I af aAf J

must be satisfied, and clearly our theory has satisfied it.

The approach developed above can readily be applied to incorporate into

the model the constraint that E2 be nonnegative. Here, E2 - 2aboe - OablAf

can be negative when E is positive, and E is always positive (except when 2 -

2ae/Af, which gives E - 0). The requirement E2 ? 0 implies that one is not

allowed to apportion all of the free energy of fusion ablAf. If the amount

ýablAf which is apportioned were to exceed 2abae, then E2 would be negative.

Therefore, one has E2 - q 2 abae where q is an apportionment parameter with 0 s

q 5 1. And E+E2 - - 2 abae + ablAf + V2abae - ab.Af - (l-n) 2 abee. For
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convenience, make the change of variable 8 - l-q with 0 < 8 < 1 so that for

all I and Af

E2 - (l-0)2aboe and E + E2 - ablAf - 82abae.

Observe that the barrier E + E2 to the destruction of the second and each

subsequent stem cannot be smaller than the free energy increase E that occurs

upon its destruction, which implies that an adsorbed second or subsequent stem

cannot completely crystallize before the barrier to the formation of that stem

is surmounted, i.e. that the upper limit, determined below, on P" is less than

1.

To find an expression for P" in terms of 0, one first finds ý in terms of

8 by equating the expressions for E2 , i.e.

(l-e) 2 abae - 2 abue - OabAAf

whence
2ae

Clearly, equating these expressions and expressing 0 in terms of 0 is valid

since decreasing 2 abae by an amount OablAf must be equivalent to decreasing
2 abare by 62 abae. Note that the constraint 2 abaoe - OablAf E 0 implies that the

2ae
inequality 0 5 -e must be satisfied; since 0 : 8 : 1 holds, we have

2a
indeed satisfied this inequality. Also note that -f is always less than or

2a
equal to one since I • A- has been established. (Incidentally, 2 abae -

2°e 2ae or > f

OablAf a 0 does not imply constraints 1 O , Af 0 e e 2: 2

Finally, recalling that • - and substituting above gives P" - 2a-e

In the special case 7 - 0 - 0, our mode. reduces to the case b - - 0 of

the LH model which permits negative barriers for nonzero •.
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VI. DETERMINATION OF THE SIGN OF A01

At this point, one needs to determine when A01 is positive, zero, and

negative. Now A0 - 2abar + 2bla - ablAf Ž 0 implies b1(2a-aAf) > -2aba'; and

there are three cases to consider.

Case (a): 2a - aAf > 0 or Af < 2a. Then the inequality 2 > b(2c-aaf)

is always satisfied since I is always greater than zero, and hence A01 > 0

holds.

Case (b): 2a - aAf - 0 or Af - 2a. Then A01 - 2abae, which is always
a

positive or zero depending on a'e"

Thus, combining cases (a) and (b), we have A01 0 for all I when Af s
a, where A -1 0 when both ac - 0 and Af -2.

Case (c): 2a - aAf < 0 or Af > 2. Then A01 2 0 implies -bY(aAf-2a) >

2cr'
-e-2aba' or 1 - - A0. Thus, when Af > a-7, A01 _> 0 holds for I _s 20, ande 1i 2 ar 0*
aMf

A01 : 0 holds for I ; lo. (Observe that as Af - 29a from values greater than
a, 0 A -. ) There is, however, one further condition to consider here.

2ae o
Recall that I 2 E- has been eztablished. If l0 < ý-e holds, then I > I

holds and consequently A01 < 0 would hold for all A. To determine when 10 <

2o'2ae --f 2ae La
-- holds, simply write A < -e, and noting that < 1, rearrange this

aMf

inequality to get - < ee--. Now, if a : ale, this inequality would be 2a
ah sa e e ea f

< 0, which is never satisfied; hence I < 2a e never occurs when ae : a". if0 Af e
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2ae 2a-a Te > a' and -_a < Af
ae o0 < occurswhen Af > . Thus, f e a

6 0---T, , >i - 0 holds for 2 i5 20 and A01_5 0 holds for I2 ? 20, but for Af
- 2a e-a

> ;-- , A01 < 0 holds for all 1.

VII. EXPRESSIONS FOR STotal (T) AND I(T)

If e _s a', our model with no negative barriers has

(1) A 1 +E1 - 2abae+2b2a-7ab.2Af for Af s ao-- w a

(2) A41 +EI - 2abae+2bla-yab2Af for Af > a and 1 -5

(2) Ao1 +EI - (l-7)(2abae+2bla) for Af > 2a and I ?: I

and if a > ae'

(1) A41 +E1 - 2aba.e+2bla-yablAf for Af < 2a

(2) AO1 +E1 - 2abae+2ba'-7ab2Af for 2- < Af 5 2a a(e and" a - a e e

(2) A&1 +E 1 - (1- 7 )(2aba'+2b2a) for < Af 5 2 ae nda - a --)

(3)(3e

(3) A+E1 - (1-7)(2abae+2bla) for Af > 2a e)e
a a -a;

The purpose of categories (1), (2), and (3) will be seen shortly.

When AO1 +E1 - 2abae + 2b2a - 7 ablAf, E1 - (1-I)ablAf, which we call Case

I.
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When 601+El - e11(aa + 2blo), El - ablAf - -(2abo' + 2bla), which we

call Case II.

one always has

E (l-8) 2abae

E+E2 -
2abae + ablAf + E ablAf - 2abo

Also,

S(I,T) - N0A0( A)

A A

where B -E/kT, B1  .-(E1-E2)/kT, n O e-AIE)k
A T , nA 0-

2aba' 2abae 2a
Abbreviate c. ' - eT 2aT and recall I e Then

c. -b~ g& b 1oa n -c c ~ For Case I,

11 k 91kT kT 1 1

"Ai1+E1  2abuý 2bla -iab.tf .c, + c- (a-7)l

kT - kT ~kT kT t

1- E ~ f (l-0) 2aboe 172-(-)

kT kT kT 1

For Case II,

AO1 +El (1-7) (2aba;+2bio') %-7 l+a (1-0)1
kT -kT

E - abIfr-fj(2aba'+2b~ar) 1-8(~)2abae-t (-~1y'(-~

kT kT kT I

For Case 1,

SI(IT) 6N~ -c' e-(a-7)02/I I (l-ec e0 2l/hl)

11IT -e c e -C.1771 + e(leO)c e-(1-T)cl/ll

For Case II,

S(I,(, 1- lece-clil + e (1eO)c 00', e-(l-a7)cI/Il-
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For any Af in category (1), then,

SToai(T) - 1 dl and (T) - S ( ,T)d
To alI •2 S ( I,T)dl

For any Af in category (2),
Tol (T)S(T)d2 +- - j S 1 (2,T) d

Soalu 21 U

and

f o0 ISI(,T)dI + I S (1,T)d21(2)(T) -, 111 011 ,

1 s 1 (2,T)d2 + oS 1 (I,T)dl

For any Af in category (3),

S1 1ii(1,T)dITot~al( ) I 9' F1 S11(Y,T)dl an ~ (T) - x1S I ,T d

For purposes of comparison, the LH model which permits negative barriers

has, for all I and Af,

Ao1+E1 - 2aba; + 2b2o - Oab2Af and E2 - 2 abae - OablAf

so that
E l -E 2 ( 1 0 0

and

S(IH)(2,T) - #N0 ec'e' (a-O)cI/11 (lece-cl/I1)

l -ec eCu/k + eC-(I-+0)cx/II

and

JlS(LH) (1,T)dR

,(2,T) _ S(UH)(2,T)dl and 2(H(T) - 1T o t a " I U 1 r e s ( l Hi' ) ( X , T ) d X

As is the case in the LH model, our model has two parameters. The most

logical choice for e is 0 - 7; however, even with 8 - 7, our integrals cannot

be evaluated analytically. There seems to be no special case (other than 0 -
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y - 0) for which they could be evaluated analytically. At this point then, we

proceed without setting 6 - 7.

VIII. EVALUATION OF THE STotal(T) AND I(T)--THE VARIABLE TRANSFORMATIONS FOR

THE NUMERICAL INTEGRATIONS

The required numerical integrations were easily performed interactively
10

on the VAX using the IMSL subroutine DQDAGS. Integrals to be evaluated using

DQDAGS cannot have an infinite limit of integration. One way to proceed

before using DQDAGS is to make a change of integration variable. Although

DQDAGS can integrate functions with endpoints singularities (when the

endpoints are finite), a change of variable which results in a transformed

integrand which is bounded at all points including the finite e dpoints in the

new range of integration, is preferable to a change of variable which yields

an improper integral albeit with finite integration limits. For each of the
integrals appearing in S(T) T Sa( , aal(T) a v

ToTot Tota a(TT) an variable

transformation which resulted in a proper integral was in fact found. The

same transformations did not transform the corresponding integrals in the

numerators of 2( 1 )(T), 1(2)(T), and 1(3)(T) into proper integrals; however,

the transformed integrands were of the form (-In x)f(x) with the singularity

resulting only from the factor In x as x - 0. This endpoint singularity could

be handled by DQDAGS.

Consider first the integral in S(T)Total(T). The variable transformation

consists of defining

x = e(l--Y)c e-(1-7)c1/1 1

Note that x(I - •) - 0; the constant e(1_7)c, i.e. the 1-independent factor,

is chosen so that x(I - 11) - 1. Solving for I in terms

of x gives I - 1 1- Inn x] provided - Y 1. Then di- - 1 ()dx." (l-7)cJ (-I)c x

Fue e11
Furthermore, e - (a-7)c/ I _a-Cx-7 -l1 x1_ , and
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e- (1--Y)cI/Il - e"(I'7)c x so that

S(I) (T) - e e'e(f)c l I-7 (-X1 () dx
U 1-x''7 + e(I-O)c e"( 1 '7)c x

Simplifying gives

Ttal(T) e-ce( dx

- 0 1-x '-1  + e "( '-7 )c x

This is one of the integrals that was evaluated numerically by DQDAGS.

Designate the integrand above as fl(x). Using the same variable

transformation to evaluate the numerator of I( 1 )(T) gives

1 (Ln x -ln x)f (x)dx

f f(x) dx - +fo fl(x) dx

Next, using the same transformation on the integral 0i SI(I,T) dl

appearing in STal (T) gives

0e'Cf e"(a-7)cC 11

0 SI (2,T)dI . N0 (1-7)c x0fl(x) dx

where

x0 - x(I-1 0 ) - e(l--Y)c e-( -7)c10 /11 - e(l'7)c e-(l-7)c'/(l-a)

with 10 - 2c•/(l-a)Af as defined previously.
0 1(2)(T

Similarly, the integral IS 1(IT)dI appearing in (T) becomes

f PNpec' e-(a-7)c (1 fI II dl}

I SI ( I,T) di - 1 xV0 fi(x)dx + 1 jx(In x)fl(x)dxy1 1-I~ (1-7)co

A different transformation is made on the integral F SI I (IT) di also

appearing in S(2) (T). Here, define

x M e(l-7)(c-c') e- (l-7)acl/l1
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Again x(1 Icc 0; the constant e('-I)(c-c) ir chosen so that x(I-10 ) - o

~iIt 1 In 7
which is given above. Solving for I gives I - [clc- provided I o

1. Then dI - -(l)ac (x ) dx. Furthermore, el7 Ch l -e-(1-)(c-c')

1 ---- (C-c'')(-a-) i-cr

e- -c/I 1 - e-(C-C')/a X(-) , and e'(lcl7)Ch/xl e e (-)

Substituting gives

fs11 ( ,T~d- Noe-(l-7)c' e(l-V) (c-c') 11

0 xieei(' c )1-dx
1-ec e (l-y)a + e (1 eO)c e 7c e 'I-

- N% e -(1 --)C21  x0 1-e eL(ctc x(l--)a 2. dx

(1-7)o 0- a ee J x(1-7y)0 + e -(0-7~)c e C e-["]ý X(l-7)a

Designate the integrand above as f 2(,c). Similarly, the integral

FlsIS1 (1,T)dl appearing in 12)
2 (T) becomes

FIS11 (2,T)dI- #N(l-,).C'l ~c;cD') 'I1J0  f2 (x)dx+ (Cl..Y).c J0r -l x~ 2(d}

Thus,

S(2) (T) - ("0 1 -cof~xd +e ( o 1)c01 f de
Total F2. (l--f)c J flx JLk2 (1-7')ac Jrof 2(x)

and
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1 ( 2 ) ( T ) - -_._fJu I 2) r(T-TS (

6N 0 •Total•

with the appropriate expressions for the integrals and S(2)To

substituted above.

Finally, consider the integral in S()a (T). The variable transformation

to be made on this integral is

x a e (l-7)ac e- (-1-)acI/ 1

Again x(2 - -) - 0 and the constant e (l7)ac is chosen so that x(I-2 1 ) - 1.

Solving for 2 gives I- 1I [I- I x provided Inol. Then di(l--Y)ac poI de x •.Ten dl/-

(l- -- ( ) dx. Furthermore, e-(l'7)ac2 /ll - e (l'7)ac xe'Ci/1l -

Il-l-oc

e- x (1-7)a , and e-(laT)C/2l -- e"(l-07)c X(l Oct so that

S(3) j6N0 e-) (x( -2)a) dx
Total(T) - u (l-7)ac JO -L d

U x(l-7)0 + e' ac eT(c'I+c) x(1-7)0

Designate the integrand above as f 3 (x). Using the same transformation to

evaluate the numerator of 1(3)(T) gives

( J1 (-ln x)f 3 (x)dx

T (l-7)ac 1 f 3 (x)dx

0

IX. RESULTS AND DISCUSSION

A VAX FORTRAN program was written to evaluate the required mathematical

expressions. All calculations were done double precision using the model

parameter values given in Figure 3 of Reference 4; namely, a - b - 5 x 10-8



22.

cm, a - 10 erg/cm2 , a - 100 erg/cm2 , T - 500 K, Ah - 3 x 109 ergs/cm3 , and

Af - (T; -T )Ah/T;, where Ah is the enthalpy of fusion at T - Tm" The average

lamellar thickness calculated from the LH model is independent of a'; this ise'

true for our model only for Af < 2_a however. Other quantities such as
a1 I I

STotal(T) do depend on a' even in the LH model, and physically, one expects 0
e

:5 a" : ae In the case a' M 0, our model is slightly simpler, for then
e e e

A01 + El - 2bla - 7ablAf af < 2a

El - (l-7)ablAf I
a•I + El - (l-7)2bla 1 Af > 2

E1 - ab2Af - 72bla

Let us investigate our model in detail for the case a' - 0 first; this is also

the somewhat arbitrary choice for a' made for the calculations1 ' 2 for the LHe
model. For the values of a, a, Tm, and Ah given above, the temperature T* for

which f 2-a is T* - 4331 K.
a

Given the parameter values above and now with the choice 0-", the

calculated average lamellar thickness vs. temperature curves (I vs T) are

plotted in Figure l(a) for the selected values of 7 - 0, 1, and 1. (Results4' 2

for 7 > 1 will be discussed later.) Some of the data used to construct these

plots is given in Table I. (For Af 5 2, the average lamellar thickness isa'

given by the expression for 2( 1 )(T) given previously and for Af > a, by the

expression for 1(3)(T) also given previously.) Clearly, I decreases

monotonically with decreasing T in agreement with typical experimental

behavior. For most supercoolings, the magnitude of the I values is of the

order of 25-125A, which is quite reasonable. Note that at least for all

values of Af > 2-a, I at a given T increases with increasing 7. Also, the

numerical results shown in Figure l(a) indicate that I vs. T is relatively

insensitive to the value of 7.
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For comparison, we have reproducei part of Figure 3(b) of Reference 1 as

our Figure l(b), which shows the LH model I vs. T curves with • - 0 for the

selected values of 4 - 0, 1, 1, and 1. Some of the data which we calculated

in order to construct these plots is given in Table II. The LH model 4 - 0

curve is identical to Gur 7 -0 curve. For Af < 2a each of the LH model "4

curves" is qualitatively similar but not quantitatively identical to its

corresponding "I curve" presented in Figure l(a). Recall that the

quantitative difference arises from the fact that the barrier E2 has been

constrained to be nonnegative, i.e. E- (l-) 2 abae. For Af > a, however,

the LH model 0 curves are in marked contrast to the 7 curves; in particular,

for each 4 curve, I approaches infinity asymptotically as Af approaches 2a0_a'

This is the behavior which is known as the 62 catastrophe.

One point is worth emphasizing here; namely the relationship between

and 4. In both our model and the LH model, ', - -, but this ratio in the LH

II
model is a constant, whereas in our model

f +• ýY 0

For the case a' - 0, this becomese

2;aAf a

Af <2a
-- a

Now, for any given 4, say 4, I in the LH model is infinite for all Af Ž 2ar

4.a'

and for all Af > 2, there is no finite value of I for any 4 ;t

Equivalently, a value of 0 Ž 4,. is not possible for a chain-folded system for

all Af 20, that is, high values of 4 do not lead to chain-folded polymer

crystals at high enough supercooling according to the L1i model. Experiment,
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however, gives chain-folded crystals at high supercooling with an average

lamellar thickness that decreases monotonically with decreasing temperature.

As we have seen, our one-parameter (i.e. 7) model with a' - 0 does reproducee
this high supercooling behavior. And yet, high values of •, i.e. of the ratio

are not associated with our high-supercooling chain-folded systems. To

see this, first introduce the dimensionless quantity x, where 0 < x < 1. Then

for anv Af -- a, • - -Y - Ix. Since I cannot exceed one, 0 in our model

cannot exceed xj for any Af where x is any given value of x. But this

is exactly what was found for b in the LH model, i.e. that a value of
greater than or equal to 0j is not possible for any Af > 2-. Thus, for Af >

a- our model, through the imposition of the constraint that barriers bea2

nonnegative, places exactly the same upper limit, 2a, on our 0 that isa2--' on ur moel unlik the

predicted for 0 in the LH model. However, for Af > 2-a, our model, unlike the
a

LH model, predicts 2 vs. T in qualitative agreement with experiment.

Th,.s, the selected calculations done for our model indicate that, for the

case a; - 0, our model does not exhibit an infinite average lamellar

thickness. Most importantly, our model predicts I vs. T curves which are

monotonically decreasing with decreasing T in agreement with experiment. That

is, we have successfully extended the LH model to higher supercooling.

Also, this success, coupled with the numerical results shown in Figure l(a),

significantly increases our confidence in using 7 - 0 as a first approximation

for mathematical convenience in practice.7 Finally, our results show that the

68 catastrophe of the LH theory is related to the failure to exclude negative

barriers and moreover that the LH approach to polymer crystallization is in

itself valid for high supercooling--given that negative barriers are

forbidden. Prior to this work, the LH approach had always been described as

one which is invalid at high supercooling.

One set of results with 8 o I is presented in Table III. Here we see

that for 7 - and 0 - 1, the calculated I(T) differ only slightly from the

case with - and 0
2 andB



25.

Next, we investigated our model for a' # 0. (Recall that I for the LIe

model is independent of a' and that our model is independent of a' for Af se e

a Using the same values for a, b, a, a T;, and Ah as above and againa " el

with 8 - 7, I vs. T curves for al - 0, 60, 100, and 150 erg/cm2 -each with

7 - I--are plotted together in Figure 2. Some of the a' 0 0 data used to

construct these plots is given in Table IV (and the a' - 0 data has been seen
e

previously in Table I). From Figure 2, we see that I decreases monotonically

with decreasing T for 0 < a <e as well as for a" - 0 and that 2 vs. T isee

relatively insensitive to the value of aý s ae. Thus our conclusions made

immediately above for the case a; - 0 are valid when 0 < a; : a.. For a; -

150 erg/cm 2, there is a relative minimum in I vs. T near T - 405 K, and the

curve passes through a small and "diffuse" relative maximum at a lower

temperature. Recall that one expects 0 : a' : a so that with a -
e e e

100 erg/cm2, ae' - 150 erg/cm2 may not be realistic but is examined in order to
eeexplore the model predictions as a function of a;-

The relationship between 7 and 0 with a' 0 0 is worth emphasizing at thise
point. In doing so, one difference between the cases a' - 0 and a; -e 0 will

ee
be found; namely, 0 can exceed 01 for some Af 2or when al P 0. To

3O a

reiterate, in both our model and the LH model, S - •-, but this ratio in the

LH model is a constant, whereas in our model
f2a'Ce+ 'a) &1(1,T) :s 0

1 A 1 (1,T) > 0

where the notation 0(1,T) and A01 (I,T) emphasizes here the dependence of 0 and

A01 on I and T. (The T dependence, of course, enters through Af.) Recalling

the conditions which govern the sign of A01 then gives, when ae > ae
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( 2o~ for all)I when Af >2
2 Afa# f fo))we~ af affre 2o e)

for 2 al) when Af < 2.: 2e
ge ae

0(,T a a aa

yf'or all I when Af _- 2a e e

a

and when ae : a;

2a'
_ +e for 2 2>: when Af > 2a

- 0  a

,Tfor) I z 0 when Af > 2a
0 a

'-for all ) when Af < 2aa

2a'_ae

where I . Furthermore, on an I vs. T curve, one haswhr 0 2aI

i.aAf

F2a,'-
2o A41(2,T) 5 0

where the conditions which govern the sign of A01 (2,T) are those given above

for AO1(I,T) but with I replaced by 2. Therefore, the temperature To of a

point (10, TO) on an 2 vs. T curve and at which A01 (2,T) - A01 (2 0 ,T 0 ) - 0 is

the solution to the following non-linear algebraic equation in the one unknown

T:

1(2) (T) - 10

or
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J20SdIJS 1 d 2a;

Is ol+ is idaf

le0 S Idl+ r, S IIdl 1 -

If ae > a ,To will correspond to a value of Af in the range ae < af _5

2a --aeae ', but if ae _5 ae, To will correspond to a value of Af in the range

Af > 2a

Rather than attempt to solve the above eqotation iteratively, one simply
plots the left-hand side 1(2)(T) vs. T and the right-hand side 20(T) vs. T on

the same graph, and T is giveii by a point of intersection of the two curves.

Note that as Af approaches a from values greater than 2a, 20 approaches 2a

infinity and that I0 decreases monotonically with decreasing T for Af > a
For each of the 2 vs. T curves with a" o 0 , we found one point of

intersection (20' TO), which is designated on each curve by an open circle.

We also found that 1(2)(T) > 10 holds when T < To and that 1(2)(T) < 20 holds

when T > T0 . Thus, Aý(],T) < 0 holds for T < To and Aý(I,T) > 0 holds for T >

To. Our final result is that, on an I vs. T curve,(2a'e +e+ 0<T-T

7To : T < T;

Note that if the dimensionless quantity x, 0 < x < I, is again introduced by
writing Af - 2xa then I-- ae + 1 so that, unlike the case a" - 0 • can

-a 2~a e 1 e

exceed x ifor some Af ý a where x is any given value of x.eee j fo oeAxja'j

Now, upon proceeding to consider results for 7 > I , our basic

conclusions--especially the fact that we have removed the 61 catastrophe at

high supercooling--remain intact; however, we do not obtain I vs. T curves

which are monotonically decreasing for Ill T when y is "sufficiently" large.

Using the same values for a, b, a, ael, Tm" and Ah as previously and again

with e - 7 and a# - 0, the calculated I vs. T curves for the selected values
e .

of -Y - .90, and .95 are plotted in Figure 3(a), and the curve for -24'
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.99 appears in Figure 4. Some of the data used to construct these plots is

given in Table V. The effect of 7 on I as a function of T is readily

apparent. First, the curve for 7 - 2 appears on closer examination, to

exhibit a discontinuity or break in its slope at the temperature T* - 4331K
3

for which Af - 2_ (This statement will be qualified later.) As for 7 - 2

for - ,.9, .95, and .99 does decrease with decreasing T for all T for

which Af > 2a, and there appears to be a break in the slope of 2 vs. T at T -
a1

T*. Unlike for 7 - •, the higher 7 curves pass through a relative minimum at2a
a temperature for which Af < 2-, the temperature T, at which this minimum

a'
occurs increases with 7 (for 3- •, it occurs between T - 440 and 4331K and so4 3

can hardly be seen on the plot.) Also, over the interval T < T,, 2 vs. T is

at a relative maximum at T - T*. Finally, note that 2 vs. T curves for .99 <

7 < 1 are qualitatively similar to the 7 - .99 curve and do not exhibit an

infinite average lamellar thickness. The numerical integrations in the

expressions for I( 1 )(T) and 1(3)(T) could not be done for I - 1 as a result of

the factor (1-7) appearing in various denominators.

For comparison, we have reproduced part of Figure 3(b) of Reference I as

our Figure 3(b), which shows the LH model I vs. T curves with 0 - 0 for the

selected values of 0 - 1, 3 .90, and .95. Some of the data which we
2 4

calculated in order to construct these plots is given in Table VI. These LH
2a

model 0 curves exhibit the 61 catastrophe as Af approaches O, as do all LH

curves for .95 < 0 : 1. The curves for .95 < 0 s 1 are similar to the # - .95

curve; since integrations can be done analytically in the LH model when 0 -

2 vs. T for 0 - 1 was able to be obtained. 1

Thus, for high enough -y, our aL - 0 model I vs. T curves appear to have a

break in slope at T - T*. We suspect that there is indeed a break in slope at

T - T* because the relation

I 2f aa-- a
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implies that " is discontinuous at Af - however we have not evaluated d'
dT a d

at f The break in slope is apparently indiscernible up to y values of
a

about where the slope of I vs. T has the same sign (positive) regardless of
2'

whether the point Af - 2 is approached from values of Af higher or lower than
a

2. As 7 increases, however, the break becomes pronounced with the
a

concomitant appearance of a relative maximum in I at T - T* and a relative

minimum in I at T - T,; necessarily then, the slope of I vs. T as Af

approaches 2a from values less than 2abecomes negative. We will refer to

this undesirable behavior, manifest at high values of 7, as the I anomaly.

Unlike the 61 catastrophe in the LH model, the relative maximum in I vs. T, as

noted above, always appears at Af - 2a for all values of 7 given that a; - 0.
ae

Next, we consider al o 0 for high values of f. The I vs. T curves for a'
e e

- 0, 60, 100, and 150 ergs/cm2 -- each with 7 - -- are presented in Figure 5.

The curves pass through a common relative minimum between T - 440 and 4331 K
3

(for which Af < 2a ), and then each curve rises and passes through a relativea
maximum, that maximum being relatively higher and occurring at higher Af the

larger the value of a'. At each maximum, there would appear to be a break in

the slope of I vs. T. Having passed through its maximum, each curve decreases

monotonically with decreasing T thereafter.

One should be careful to note that what appears to be a break in the

slope of I vs. T when a' 0 0 is probably not a break in slope; T" shoulde dT sol

be continuous for all relevant T. Whether a break in the slope of I vs. T

occurs at Af - 2a when oa ; 0 as was presumed true for a' - 0 cannot be
a

determined conclusively from the appearance of the graphs, although the break

appears to be absent.

Qualitatively similar I vs. T curves are obtained for -f - 0.9 and a' - 0,e

60, 100 and 150 ergs/cm2 as is shown in Figure 6. See also Table VII. The
relative maxima are higher and "sharper" than the corresponding -7 - I curves,

and they have moved to higher temperature. For 7 - 0.99, the analogous
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curves, shown in Figure 7, exhibit I values which are unrealistically large as

well as maxima which are extremely "sharp".

Thus, from the graphs, we see that the I anomaly becomes more pronounced

but moves to higher temperature as I increases for a fixed nonzero value of

a'.' That is, although the relative maximum in I vs. T can appear at some Af >

2-o' when a' is nonzero, the maximum becomes less pronounced as it moves toa e

lower temperature upon a decrease in 7. Our model, then, does not fail at

high supercooling, but does exhibit anomalous behavior for temperatures

2a
corresponding to values of Af "Just" greater and "Just" less than a q. This

undesirable behavior is pronounced for large values of 7 and is more

pronounced for larger values of a' for a given y.e

We can easily rationalize mathematically how our calculated I vs. T

curves can rise with decreasing T for some Af > -a when a' is nonzero. Recalla e

that the expression for 1(2)(T), namely

f 0 S 1 ,T)dI + ,T)dl

10

contains two different integrands SI(I,T) and SII(I,T). Depending on ac, -Y,

and T, the contribution of the integrals involving SI(I,T) to 1(2)(T) may

outweigh the contribution of the integrals involving SII(I,T), and in some

cases, our calculations show that to a very good approximation

S10 *S I (eT)dI
1(2)(T) - with 20 approaching infinity.

fj I SI(IT)dl

But this is our expression for I(1)(T) for the interval Af : 2, and the

a

results of our calculations using I1~)(T) have been found to differ little

from results using 2(LH)(T), i.e. the LH theory. Not unexpectedly then,

1(2) (T) can increase with decreasing T for some Af > 2-a. We note that the
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numerator of S 1 (1,T), like the numerator of S(LH)(1,T), contains the factor A0

-ec' e-b1(2a-af)/kT, the form of which has been associated withl 0 increases

in I with decreasing T.

X. CONCLUSIONS

We have constructed a model of polymer crystallization which extends the

LH theory by excluding negative free energy barriers, and we have shown that

the 61 catastrophe of the LII theory is related to the failure to exclude these

negative barriers. Our results show that the new model is more consistent

with experimental behavior at very high supercooling.

Our results with a; - 0 clearly indicate that the I anomaly in our

model--and in part the 61 catastrophe of the LII theory--are associated with

the interval Af : a and are thus connected to the expression A41 + El - 2aba'

+ 2bla - 7abltf. The I anomaly also appears to be connected to this

expression even when a' o 0, i.e. even when the maximum in I vs. T occurs ate

a temperature for which Af exceeds 20 Although high values of 7 and 0 area"

considered unrealistic as has been elucidated6 recently, however, there is no

guarantee that the LIH theory as well as our extension of it has not failed to

incorporate an as yet unknown constraint or feature which would improve the

model results at high 7 values. For example, high 7 values may be

unrealistic, but the I values for high 7 from an improved model may simply be

unrealistically large but nevertheless monotonically decreasing with

decreasing T for all T.

In conclusion, we hope to extend our modification of the LII approach to

polymer crystallization to treat the interesting systems which interact with

an applied electric field.
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FIGURE CAPTIONS

Figure l(a). Plots of Average Lamellar Thickness (A) vs. Temperature (K)

for -0, , and 1, each with a' - 0 and e - . See Section

IX for a, b, a, ae, T;, and Ah which are the same for all of

the figures. At T - 4331 K (i.e. Af - 20), A41 - 0.

For T >_ 4331 K, A0, a 0 and 1b -land A - 7N2o

For T :5 433 3 K, A0, _s 0 and 1b - 7( ff) and A -y.

Figure l(b). Plots of Average Lamellar Thickness (A) vs. Temperature (K)

for - 0, 1 1 and 1 2 h with reproduced from the

Lauritzen-Hoffman Model (Reference 1); plots are independent
of oae.

Figure 2. Plots of Average Lamellar Thickness (A) vs. Temperature (K)

for a;e - 0, 60, 100, and 150 ergs/cm2 , each with 8 - 2 -2

Each open cirle designates the point (2,' TO) at which

A01 (2, T) - 0. For T z- To, A, -- 0, -, and

A - 2a Falot 2abor+ 2b]or) - A0, - 0 0 Z-f

and A - 7.

Figure 3(a). Plots of Average Lamellar Thickness (A) vs. Temperature (K)
for 7 - 1, 1, 0.90, and 0.95, each with oe' - 0 and a -

As in Figure l(a), A01 - 0 at T - 43331 K.

Figure 3(b). Plots of Average Lamellar Thickness (A) vs. Temperature (K)

for ?b - 1, 3-, .90, and .95, each with • - 4, reproduced from

the Lauritzen-Hoffman Model (Reference 1); plots are
independent of ae.

Figure 4. Plots of Average Lamellar Thickness (A) vs. Temperature (K)

for 0 - 7 - .99 and oe' - 0. As in Figure l(a),

A0, - 0 at T - 4331 K.
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Figure 5. Plots of Average Lamellar Thickness (A) vs. Temperature (K)

for -0 60, 100, and 150 ergs/cm2 , each with 0 - -

As in Figure 2, each open circle identifies the temperature T0

at which A0 1 (2,T) - 0.

Figure 6. Plots of Average Lamellar Thickness (A) vs. Temperature (K)

2for al - 0, 60, 100, and 150 ergs/cm , each with 0 - - .90.

As in Figure 2, each open circle identifies the temperature T0

at which A01(2, T) - 0.

Figure 7. Plots of Average Lamellar Thickness (A) vs. Temperature (K)

for a" - 0, 60, 100 and 150 ergs/cm 2, each with 8 - - .99.e

For a; - 0, 60, 100, and 150 ergs/cm2, T - 4331 K, 432.2 K,o 0  3

432.1 K, and 432.0 K, respectively. As in Figure 2, T0 is the

temperature at which A41 (2,T) - 0.



35.

TABLE CAPTIONS

Table I. Average Lamellar Thickness (A) as a function of Temperature (K)

for 7 - 0 and for 7 - 1 , each with a' -Oand9 -y. See Figure
2' e

l(a). See Section IX for a, b, a, ae, Tm, and Ah, which are the

same for all of the tables.

Table II. Average Lamellar Thickness (A) as a function of Temperature (K)

for with reproduced from the Lauritzen-Hoffman

(LH) Model (Reference 4); data is independent of oa. See Figure

l(b).

Table III. Average Lamellar Thickness (A) as a function of Temperature (K)

for y-½, 0- 1, andao -0.

Table IV. Average Lamellar Thickness (A) as a function of Temperature (K)

for a; - 60, 100, and 150 ergs/cm2 , each with 0 - - - See

Figure 2.

Table V. Average Lamellar Thickness (A) as a function of Temperature (K)

for 7 - .90 with a; - 0 and 9 - 1. See Figure 3(a).

Table VI. Average Lamellar Thickness (A) as a function of Temperature (K)

for P - .90 with 0 - 0, reproduced from the Lauritzen-Hoffman (LH)

Model (Reference 4); data is independent of a;. See Figure 3(b).

Table VII. Average Lamellar Thickness (A) as a function of Temperature (K)

for a; - 60, 100, and 150 ergs/cm 2, each with 0 - - .90.

See Figure 6.
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Table I. Average Lasnellar Thickness (A)
vs. Temperature (K)

TEMP. (K) PsiGamma,-O Gamma-1/2

485.000 234.383 235.303

480.000 178.390 179.781

475.000 144.660 146.556

470.000 122.074 124.507

465.000 105.867 108.867

460.000 93.652 97.253

455.000 84.105 88.342
450.000 76.429 81.344

445.000 70.115 75.762

440.000 84.826 71.267

435.000 60.328 67.641

430.000 56.451 63.528

425.000 53.072 59.481

420.000 50.100 55.988

415.000 47.463 52.941

410.000 45.105 50.259

405.000 42.984 47.877

400.000 41.064 45.744

395.000 39.316 43.821

390.000 37.718 42.077

385.000 36.251 40.484

380.000 34.897 39.023

375.000 33.644 37.676

370.000 32.480 36.429

365.000 31.396 35.270

360.000 30.382 34.188

355.000 29.433 33.176

350.000 28.540 32.225

345.000 27.700 31.329

340.000 26.907 30.484

335.000 26.157 29.683

330.000 25.446 28.924

325.000 24.772 28.201

320.000 24.130 27.513

315.000 23.518 26.855

310.000 22.935 26.226

305.000 22.377 25.624

300.000 21.843 25.045

295.000 21.332 24.489

290.000 20.841 23.953

285.000 20.369 23.437

280.000 19.915 22.938

275.000 19.479 22.456

270.000 19.057 21.990

265.000 18.651 21.537

260.000 18.256 21.099

255.000 17.878 20.673

250.000 17.511 20.259

245.000 17.155 19.856

240.000 16.809 19.463

235.000- 16.475 19.081



Table I1. Average Lamellar Thickness (.) vs. Temperature (K)

TEMP. (K) LH Psi-l/2

485.000 235.785
480.000 180.224
475.000 146.926
470.000 124.780
465.000 109.027
460.000 97.290
455.000 88.251
450.000 81.124
445.000 75.412
440.000 70.789
435.000 67.037

430.000 64.009
425.000 61.610
420.000 59.786
415.000 58.519
410.000 57.832
405.000 57.800
400.000 58.577
395.000 60.458
390.000 64.019
385.000 70.494
380.000 82.999
375.000 112.171
370.000 232.547
365.000 00



Table IlI. Average Lameliar Thickness (R) vs. Temperature (K)

TEMP. (K) ThotarI
Gamma- 1/2

495.000 675.848
490.0002
485.000 230.877
480.000
475.000 142.184

470.000
465.000 104.542
460.000
455.000 84.037
450.000
445.000 71.460
440.000
435.000 63.333
430.000
425.000 56.368
420.000
415.000 50.779
410.000
405.000 46.332
400.000
395.000 42.690
390.000
385.000 .39.639
380.000
375.000 37.036
370.000
365.000 34.779
360.000
355.000 32.796
350.000
345.000 31.035
340.000
335.000 29.454

330.000
325.000 28.022
320.000
315.000 26.716
310.000
305.000 25.516
300.000
295.000 24.405
290.000
285.000 23.373
280.000
275.000 22.407
270.000
265.000 21.501
260.000
255.000 20.646
250.000
245.000 19.836
240.000
235.000 19.067



Table IV. Average Lamellar Thickness (R) vs. Temperature (K)

Gamma I.

TEMP. (K) 0.5 H/ 60 0.5 // 100 0.5 // 150

485.000 235.303 235.303 235.303
480.000 179.781 179.781 179.781
475.000 146.556 146.556 146.556
470.000 124.507 124.507 124.507
465.000 108.867 108.867 108.867
460.000 97.253 97.253 97.253
455.000 88.342 88.342 88.342
450.000 81.344 81.344 81.344
445.000 75.762 75.762 75.762
440.000 71.267 71.267 71.267
435.000 b7.641 67.641 67.641
430.000 64.735 64.735 64.735
425.000 62.454 62.454 62.454
420.000 60.723 60.743 60.743
415.000 59.214 59.577 59.584
410.000 57.306 58.874 59.005
405.000 54.856 58.337 58.984
400.000 52.149 57.582 59.533
395.000 49.469 56.411 60.296
390.000 46.971 54.852 60.919
385.000 44.708 53.035 61.120
380.000 42.683 51.095 60.800
375.000 40.874 49.136 60.003
370.000 39.252 47.220 , 58.842
365.000 37.791 45.385 57.434
360.000 36.466 43.648 55.882
355.000 35.253 42.015 54.261
350.000 34.136 40.486 52.625
345.000 33.100 39.056 51.009
340.000 32.131 37.719 49.436
335.000 31.219 36.468 47.918
330.000 30.358 35.295 46.462
325.000 29.541 34.194 45.072
320.000 28.766 33.159 43.746
315.000 28.028 32.183 42.485
310.000 27.324 31.262 41.286
305.000 26.652 30.390 40.145
300.000 26.009 29.564 39.059
295.000 25.392 28.778 38.025
290.000 24.799 28.031 37.040
285.000 24.229 27.318 36.101
280.000 23.681 26.637 35.204
275.000 23.152 25.985 34.346
270.000 22.641 25.360 33.526
265,000 22.147 24.760 32.740
260.000 21.669 24.184 31.986
255.000 21.206 23.628 31.263
250.000 20.756 23.093 30.567
245.000 20.320 22.576 29.898
240.000 19.896 22.076 29.253
235.000 19.484 21.593 28.631



Table V. Average Lamellar Thickness ("
vs. Temperature 'K)

TEMP. (K) Ganma,0.90

485.000 236.013
480.000 180.939
475.000 148.300
470.000 127.027
465.000 112.435
460.000 102.279
455.000 95.475
450.000 91.672
445.000 91.275
440.000 96.119
435.000 112.616
430.000 117.625
425.000 109.730
420.000 103.882
415.000 99.316
410.000 95.563
405.000 92.353
400.000 89.529
395.000 86.992
390.000 84.676
385.000 82.538"
380.000 80.545
375.000 78.673
370.000 76.905
365.000 75.225
360.000 73.622
355.000 72.087
350.000 70.612
345.000 69.190
340.000 67.817
335.000 66.486
330.000 65.194
325.000 63.938
320.000 62.714
315.000 61.519
310.000 60.352
305.000 59.210
300.000 58.090
295.000 56.992
290.000 55.913

285.000 54.853
280.000 53.809
275.000 52.782
270.000 51.769
265.000 50.770
260.000 49.784
255.000 48.810
250.000 47.847
245.000 46.895
240.000 45.953
235.000 45.021



Table VI. Average Lamellar Thickness (•) vs. Temperature (K)

TEMP. (K) LH Psi-0.90

485.000 237.166
480.000 182.177
475.000 149.552
470.000 128.225
465.000 113.507
460.000 103.129
455.000 95.962
450.000 91.560
445.000 90.139
440.000 93.098
435.000 105.777
430.000 160.924
425.000


